AGU Fall Meeting (Dec 7, 2012)

A proposed mechanism for ENSO asymmetries in Transition, Duration and Amplitude

Kit Yan Choi (Princeton University) Gabriel A. Vecchi (GFDL)

El Niño - Southern Oscillation

Asymmetries: • Amplitude: El Niño tends to be stronger than La Niña

Duration: La Niña persists longer

Sequencing: El Niño tends to be followed by La Niña

Warm-to-Cold is more likely than Cold-to-Warm

Warm-to-Cold is more likely than Cold-to-Warm

What causes the asymmetries of ENSO in (1) Amplitude (2) Duration and (3) Sequencing?

Proposed mechanism

Air-Sea coupling efficiency is **higher** during **warm** conditions, **lower** during **cold** conditions, at the Pacific Ocean.

This can result in the above asymmetries in a consistent way.

Air-Sea coupling for ENSO

Efficiency: how strong surface wind stress responds to changes in SST

Wind responds more strongly to warm conditions

Wind responds more strongly to warm conditions

Wind responds more strongly to warm conditions

$$\frac{\partial T}{\partial t} = -bT + c\tau^x(t - t_1) - d\tau^x(t - t_2)$$

Damping

Positive feedback

Delayed Negative feedback

$$\frac{\partial T}{\partial t} = -bT + c\tau^x(t - t_1) - d\tau^x(t - t_2)$$

$$\tau^x = \gamma T + r \gamma |T|$$

$$\frac{\partial T}{\partial t} = -bT + c\tau^x(t - t_1) - d\tau^x(t - t_2)$$

$$\tau^x = \gamma T + r\gamma |T|$$

$$\frac{\partial T}{\partial t} = -bT + c\tau^x(t - t_1) - d\tau^x(t - t_2)$$

$$\tau^x = \gamma T + r \gamma |T|$$

$$\frac{\partial T}{\partial t} = -bT + c\tau^x(t - t_1) - d\tau^x(t - t_2)$$

$$\tau^x = \gamma T + r\gamma |T|$$

NCEP1: r~0%

FSU: r~26-38%

ERA40 : r ~ 21-27%

MERRA: r ~ 19%

CM2.1: r~ 46%

CM2.5 : r ~ 15%

AM2.1: r~46%

Two scenarios:

1) Oscillations of a stable system triggered by stochastic noise

2) Self-sustained oscillation

Warm-to-Cold is more likely than Cold-to-Warm

Warm-to-Cold is more likely than Cold-to-Warm

r = 0 %

Warm-to-Cold is more likely than Cold-to-Warm

r = 0 %

Warm-to-Cold is more likely than Cold-to-Warm

r = 40 %

Warm-to-Cold is more likely than Cold-to-Warm

r = 60 %

Why does the polarity dependence in the coupling efficiency result in the asymmetries?

Coupling efficiency = 0, no oscillation

Coupling efficiency is small

Coupling efficiency is larger

Larger coupling efficiency for El Nino o El Nino terminates faster and overshoots

Smaller coupling efficiency for La Nina \to La Nina terminates slower and is more susceptible to noise

Why does the polarity dependence in the coupling efficiency result in the asymmetries?

Coupling efficiency = 0, no oscillation

Coupling efficiency is small

Coupling efficiency is larger

Larger coupling efficiency for El Nino \rightarrow El Nino terminates faster and overshoots

Smaller coupling efficiency for La Nina \to La Nina terminates slower and is more susceptible to noise

The time mean state is, in fact, a warm state

The time mean state is, in fact, a warm state

That accounts for a fraction of the duration asymmetry.

Summary

• Within the framework of a delayed-oscillator, if the wind response is more sensitive to warm SST anomalies, or more generally,

if the coupling efficiency is higher during warm events:

- Higher likelihood of warm o cold than cold o warm
- Cold events last longer and are more susceptible to noise
- The time mean state is a warm state

These results hold for

the stochastically-forced stable mode and self-sustained oscillatory mode.

Thank You!

Two scenarios:

1) Oscillations of a stable system triggered by stochastic noise

2) Self-sustained oscillation

El Niño - Southern Oscillation

Flipped upside down

$$\frac{\partial T}{\partial t} = -bT + c\tau^x(t - t_1) - d\tau^x(t - t_2)$$

$$\tau^{x} = \gamma T + r\gamma |T| + N(0, \sigma)$$

NCEP1: r~0%

FSU: r~26-38%

ERA40 : $r \sim 21-27\%$

MERRA: r ~ 19%

CM2.1: r~ 46%

CM2.5 : $r \sim 15\%$

AM2.1: r~46%

$$\frac{\partial T}{\partial t} = -bT + c\tau^x(t - t_1) - d\tau^x(t - t_2) - \epsilon T^3$$

$$\tau^{x} = \gamma T + r\gamma |T| + N(0, \sigma)$$

NCEP1: r~0%

FSU: r~26-38%

ERA40 : $r \sim 21-27\%$

MERRA: r ~ 19%

CM2.1: r~ 46%

CM2.5 : $r \sim 15\%$

 $AM2.1 : r \sim 46\%$